设吉他的某弦的最大发声弦长为L L L ,设0 0 0 品的发声频率为a a a ,第x x x 品的发声频率为f ( x ) f(x) f ( x ) ,对应的发声弦长为g ( x ) g(x) g ( x ) 。
已知当x = 0 x=0 x = 0 时,f ( 0 ) = a , g ( 0 ) = L f(0)=a,g(0)=L f ( 0 ) = a , g ( 0 ) = L
根据物理规律,一根弦振动的发声频率与有效发声弦长呈反比,则有f ( x ) ⋅ g ( x ) = k f(x)\cdot g(x) = k f ( x ) ⋅ g ( x ) = k 成立。
当x = 0 x=0 x = 0 时,可得k = a L k=aL k = a L
由十二平均律可得,第x x x 品的发声频率f ( x ) = 2 1 12 x ⋅ a f(x)=2^{\frac{1}{12}x} \cdot a f ( x ) = 2 1 2 1 x ⋅ a
琴弦中的某一位置为k ⋅ L k \cdot L k ⋅ L ,则g ( x ) = k ⋅ L g(x)=k \cdot L g ( x ) = k ⋅ L
设k = m n k=\frac{m}{n} k = n m ,m , n m,n m , n 是互质的两个正整数,1 < m < n 1<m<n 1 < m < n 。
联立以上关系式,得到2 1 12 x ⋅ m n = 1 2^{\frac{1}{12}x} \cdot \frac{m}{n}=1 2 1 2 1 x ⋅ n m = 1
则有
x = 12 ⋅ ( l o g 2 n − l o g 2 m ) x = 12 \cdot (log_2 n - log_2 m) x = 1 2 ⋅ ( l o g 2 n − l o g 2 m )
列出m,n,x打表如下,可在吉他上找到如下的泛音点:
1 2 3 4 5 6 7 8 9 10 11 12 13 print ('|m|n|x|round(x)|' )print ('|-|-|-|-|' )s = set () for n in range (2 ,1 +8 ): for m in range (1 ,n): if gcd(m, n) == 1 : x = 12 * (log(n,2 ) - log(m, 2 )) print (f'|{m} |{n} |{round (x,2 )} |{round (x)} |' ) s.add(round (x)) print (s)
m
n
x
round(x)
1
2
12.0
12
1
3
19.02
19
2
3
7.02
7
1
4
24.0
24
3
4
4.98
5
1
5
27.86
28
2
5
15.86
16
3
5
8.84
9
4
5
3.86
4
1
6
31.02
31
5
6
3.16
3
1
7
33.69
34
2
7
21.69
22
3
7
14.67
15
4
7
9.69
10
5
7
5.83
6
6
7
2.67
3
1
8
36.0
36
3
8
16.98
17
5
8
8.14
8
7
8
2.31
2
随着n的增加,泛音将变得越来越不明显,越靠前的泛音越常用。